Abstract: | ![]() The corrosion behavior of various austenitic stainless steels and high-alloy steels has been studied in simulated fluidized bed boiler environment to develop a new corrosion resistant austenitic stainless steel for the superheater tube. The superheater is usually not installed within the bed position, which is different from the evaporator installed within the bed position. Therefore, the superheater tubes are exposed to an oxidizing environment; but it is also necessary to estimate the corrosion resistance of the steels in a reducing environment. It is already known that the high temperature corrosion behavior in conditions where CaSO4 is coated on the steels is more important than the erosion of the superheater tubes. The main results in this present study are as follows: The Nb bearing steels and low C steels showed good resistance to high-temperature corrosion in CaSO4/CaO, e.g. 347, 304L and HR3C. The corrosion rate of all steels used increased with increase in temperature, particularly at temperatures higher than 650°C. Internal penetration was not detected at temperatures lower than 550°C, but it was detected at temperatures higher than 600°C, in particular, higher than 650°C. The corrosion thickness loss was almost the same as the internal penetration depth at 700 and 750°C in the 300 series steels placed in CaSO4/CaO, including the fine grained 347 steel, while the internal penetration depth was larger than the corrosion thickness loss in high-alloyed materials such as Alloy 800 and 310 steels. At temperatures higher than 800°C, the same result was also obtained for the fine grained 347 steel. The corrosion during exposure to oxidizing or reducing gases without CaSO4/CaO or CaS was slight, but when the test specimens were placed in CaSO4/CaO or CaS, the corrosion rate sharply increased, regardless of the atmospheric gas composition. Cr, Si, Mn (less than 5 %), Mo and Nb are beneficial elements while C, Cu and Al are harmful elements. From the above results, the following steel was developed for high temperature corrosion resistance in CaSO4/CaO: low C-22/25Cr-17/25Ni-3/5Mn-(2Mo)-Nb-0.08/0.2N-Al-(B). |