首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络和综合特征的车牌定位算法
引用本文:王森 陈炬桦. 基于神经网络和综合特征的车牌定位算法[J]. 微机发展, 2008, 18(2): 38-41
作者姓名:王森 陈炬桦
作者单位:中山大学 广东广州510275
摘    要:文中提出一种基于神经网络.利用车牌颜色、字符分布特征来提取车牌的算法。与以前的神经网络定位车牌不同的是,本算法是用二值化后每个8-连接对象作为网络的输入。这样可以减少训练样本数目.有针对性地训练噪音。实验证明本算法对于复杂背景的车牌有较好的提取效果,并且有较快的执行速度和较好的鲁棒性。

关 键 词:车牌定位  神经网络  颜色空间  灰度共生矩阵
文章编号:1673-629X(2008)02-0038-04
修稿时间:2007-05-25

Algorithm of Car Plate Location Based on Neural Network and Integrated Features
WANG Sen,CHEN Ju-hua. Algorithm of Car Plate Location Based on Neural Network and Integrated Features[J]. Microcomputer Development, 2008, 18(2): 38-41
Authors:WANG Sen  CHEN Ju-hua
Affiliation:WANG Sen, CHEN Ju-hua (Sun Yat-Sen University,Guangzhou 510275 ,China)
Abstract:Presents an algorithm which makes use of information such as color of the car plate and the distribution of the car plate characters based on neural network to extract the car plate.The algorithm uses every 8-connection objects as the input of the neural network which is different from other neural network location of car plate.The method could reduce the sample used for training the network and training the noise of the picture directly.Experiments show that method is effective and robust for the photo which have complicated backgrounds and meantime execute very fast.
Keywords:car plate location  neural network  color space  gray level co-occurrence matrix
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号