首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of 36°YX-LiTaO3 wafers byline-focus-beam acoustic microscopy
Authors:Kushibiki  J Ishiji  H Kobayashi  T Chubachi  N Sahashi  I Sasamata  T
Affiliation:Dept. of Electr. Eng., Tohoku Univ., Sendai;
Abstract:Application of line-focus-beam (LFB) acoustic microscopy is extended to characterization of substrates for SH-type SAW devices. Theoretical and experimental studies on a wave mode for characterization are carried out on 36°Y-cut LiTaO3 wafers. A Rayleigh-type mode of leaky surface acoustic waves (LSAWs) must be employed instead of an SH-type mode of leaky pseudo-surface waves (LPSAWs). Experimental results show that the LSAW propagation should be directed along the X-axis because the LSAW velocities are more sensitive to chemical composition and elastic inhomogeneities. The relations among the LSAW velocities, densities, and Curie temperatures are determined. The LSAW velocity increases linearly at the rate of 0.52 m/s/°C with the Curie temperature. A chemical composition change of 0.03 Li2 O-mol%, corresponding to temperature resolution of better than 0.3°C, is easily detected by the velocity measurements. Elastic inhomogeneities due to residual multi-domains, produced during the poling process during wafer fabrication, are interpreted quantitatively by this ultrasonic technology
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号