首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro expansion of CD34+/CD41+ cells from human peripheral blood CD34+/CD41- cells: role of cytokines for in vitro proliferation and differentiation of megakaryocytic progenitors
Authors:K Koizumi  K Sawada  M Yamaguchi  A Notoya  T Tarumi  H Takano  Y Fukada  M Nishio  E Katagiri  T Yasukouchi  N Sato  S Sekiguchi  T Koike
Affiliation:Department of Internal Medicine II, Hokkaido University School of Medicine, Sapporo, Japan.
Abstract:
The aim of this study is to clarify the transitional change of the proliferation and differentiation of human peripheral blood CD34+ cells to megakaryocytic lineage, focusing on its clinical application. We developed a rapid system to purify human peripheral blood CD34+ cells from healthy volunteers, which produced CD34+ cells with a 90% purity. The purified CD34+ cells predominantly consisted of CD41- cells, and the rate of coexpression of CD41 was 0.6% +/- 0.5%. When the purified cells were cultured in liquid phase for 10 days in the presence of recombinant human stem cell factor (rSCF: a ligand for c-kit), interleukin-3 (rIL-3), and thrombopoietin (rTPO: a ligand for Mpl), the number of CD34+/CD41+ cells increased to 19% +/- 7% of total expanded cells on day 4 (4 days of liquid culture) and then gradually decreased to 2.2% +/- 0.6% on day 10. The absolute number of CD34+/CD41+ cells increased and reached a plateau on day 6, and 1.7 +/- 0.6 x 10(5) CD34+/CD41+ cells were produced by 1 x 10(5) CD34+/CD41- day 0 cells. The CD34-/CD41+ cells appeared on day 6, continuously increased in number until day 10, and constituted the main population of expanded cells on day 10, with a value of 38% +/- 18%. On day 10, 19.5 +/- 10.6 x 10(5) of CD34-/CD41+ cells were produced by 1 x 10(5) CD34+/CD41- day 0 cells. The deletion of rTPO from this cytokine combination decreased the number of CD34+/CD41+ and CD34-/CD41+ cells, after days 6 and 8, respectively. Day 0 cells required rIL-3 for promoting colonies containing megakaryocytes, whereas rTPO alone promoted almost no megakaryocytic colonies from day 0 cells. Thus, a combination of IL-3 and SCF expands CD34+/CD41+ cells from CD34+/CD41- cells, and TPO mainly acts to increase CD34-/CD41+ cells. This study suggests that if the expansion of CD34+/CD41+ is performed in vitro, the 6 days' culture of peripheral blood CD34+/CD41- cells with a combination of IL-3 and SCF with TPO provides the most rapid and stable products of CD34+/CD41+ cells for the rapid recovery of platelets in patients with peripheral blood stem cell transplantation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号