首页 | 本学科首页   官方微博 | 高级检索  
     

地震作用下金沙江某跨江桥梁岩质岸坡动力响应分析
引用本文:宋丹青,黄进,刘晓丽,张鲁军,王恩志.地震作用下金沙江某跨江桥梁岩质岸坡动力响应分析[J].四川大学学报(工程科学版),2021,53(2):45-53.
作者姓名:宋丹青  黄进  刘晓丽  张鲁军  王恩志
作者单位:清华大学 水沙科学与水利水电工程国家重点实验室,清华大学 水沙科学与水利水电工程国家重点实验室,清华大学 水沙科学与水利水电工程国家重点实验室,齐鲁交通材料技术开发有限公司,清华大学 水沙科学与水利水电工程国家重点实验室
基金项目:博士后创新人才支持计划(BX20200191);国家重点研发计划项目(2018YFC1504801);清华大学“水木学者”计划(2019SM058)
摘    要:由于地震波的随机性及地质构造的复杂性,导致岩质边坡的地震响应特征变得十分复杂。以金沙江地区某跨江桥梁岩质岸坡为例,采用有限元方法研究了地震波在岩质边坡内的传播特征,分析了不同类型结构面对边坡动力响应特征的影响;采用振动台模型试验验证了数值计算结果,探究了边坡的动力变形演化规律及其破坏机制。研究结果表明:软弱结构面对岩质边坡的波传播特征影响较大,在波传播过程中结构面使坡内出现局部的放大效应,相同条件下边坡的动力放大效应为:块状边坡>顺层边坡>反倾边坡。边坡高程、坡表微地貌及结构面对边坡的动力放大效应具有较大的影响,边坡动力放大系数随高程增加而增加,坡表微地貌变化使平台区域出现局部放大现象,块状边坡中放大效应主要集中于最上层顺向结构面以上的表层坡体。地震作用下块状边坡的动力放大效应随激震强度的增加而增加,边坡动力变形演化过程主要包括弹性变形、塑性变形和滑动破坏3个阶段。软弱结构面对块状边坡的地震破坏模式具有控制性作用,最上层顺向结构面为潜在滑面,其地震破坏模式为拉裂-滑移-倾覆式破坏。

关 键 词:软弱结构面    岩质边坡    波传播特征    动力响应及变形演化规律    地震
收稿时间:2020/5/23 0:00:00
修稿时间:2020/7/19 0:00:00

Dynamic Response Analysis of Rock Bank Slope of a Bridge Across Jinsha River Under Earthquakes
SONG Danqing,HUANG Jin,LIU Xiaoli,ZHANG Lujun,WANG Enzhi.Dynamic Response Analysis of Rock Bank Slope of a Bridge Across Jinsha River Under Earthquakes[J].Journal of Sichuan University (Engineering Science Edition),2021,53(2):45-53.
Authors:SONG Danqing  HUANG Jin  LIU Xiaoli  ZHANG Lujun  WANG Enzhi
Affiliation:Department of Hydraulic Engineering,State Key Laboratory of Hydroscience and Engineering,Tsinghua Univ,,Department of Hydraulic Engineering,State Key Laboratory of Hydroscience and Engineering,Tsinghua Univ,Qilu Transportation Materials Technology Development Co Ltd,Department of Hydraulic Engineering,State Key Laboratory of Hydroscience and Engineering,Tsinghua Univ
Abstract:Due to the randomness of seismic waves and the complexity of geological structure, the seismic dynamic response characteristics of rock slopes become very complicated. Taking a rocky bank slope of a bridge across the Jinsha River as an example, the propagation characteristics of seismic waves in rock slope are studied by using finite element method (FEM), and the influence of different types of structural planes on the dynamic response characteristics of slopes is analyzed. Shaking table model test is used to verify the numerical results, and the dynamic deformation failure evolution law and failure mechanism of the slope are deeply studied. The propagation characteristics of seismic waves in rock slope are studied by using FEM, and the dynamic deformation evolution law and failure mechanism of the slope are studied. The results show that weak structural plane has a great influence on the wave propagation characteristics of slopes. In the wave propagation process, structural plane causes local amplification effect in slopes. Under the same conditions, the dynamic amplification effect of the slopes is as follows: block slope > bedding slope > anti-dip slope. Slope elevation, surface microtopography and structural planes have a great influence on the dynamic amplification effect of slopes. The dynamic amplification coefficient of the slopes increases with the elevation, and the variation of the slope surface microtopography results in the phenomenon of local amplification at the platform area. The amplification effect in the block slope is mainly concentrated on the surface slope above the topmost bedding structural plane. Under the action of earthquake, the dynamic amplification effect of the block slope increases with the increase of the seismic intensity. The evolution process of dynamic deformation of the block slope mainly includes three stages: elastic deformation, plastic deformation and sliding failure. Weak structural plane has a controlling effect on the seismic failure mode of massive slope, and the topmost structural plane is the potential sliding surface, and its seismic failure mode is split - slip - overturning failure.
Keywords:Weak structural surface  Rock slope  Wave propagation characteristics  Dynamic response and deformation evolution law  Earthquake
点击此处可从《四川大学学报(工程科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(工程科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号