首页 | 本学科首页   官方微博 | 高级检索  
     

改进K-means算法在声纹识别中的应用
引用本文:张彩娟,霍春宝,吴峰,韦春丽. 改进K-means算法在声纹识别中的应用[J]. 辽宁工学院学报, 2011, 0(5): 291-294
作者姓名:张彩娟  霍春宝  吴峰  韦春丽
作者单位:辽宁工业大学电子与信息工程学院,辽宁锦州121001
基金项目:辽宁省科技厅工业攻关项目(2007217003)
摘    要:
在基于高斯混合模型(GMM)的声纹识别算法中,K-means聚类算法是GMM模型参数初始化常用的方法之一。传统K-means算法在聚类过程中采用几何距离进行分类,忽略了类中各矢量的分布不同对聚类结果的影响,常常得不到令人满意的识别结果。文中对传统K-means算法进行了改进,并将改进后的K-means算法与GMM结合应用到声纹识别系统中。实验结果表明,改进的K-means算法与传统的算法相比具有更好的识别效果。

关 键 词:K-means算法  GMM  说话人识别

Application of Improved K-means Algorithm to Voice Print Recognition
ZHANG Cai-juan,HUO Chun-bao,WU Feng,WEI Chun-li. Application of Improved K-means Algorithm to Voice Print Recognition[J]. Journal of Liaoning Institute of Technology(Natural Science Edition), 2011, 0(5): 291-294
Authors:ZHANG Cai-juan  HUO Chun-bao  WU Feng  WEI Chun-li
Affiliation:(Electronics & Information Engineering College,Liaoning University of Technology,Jinzhou 121001,China)
Abstract:
In voice print recognition algorithm based on Gaussian mixture model(GMM),the algorithm of K-means clustering is one of widely used methods in GMM.Traditional K-means algorithm was classified by geometrical distance in clustering process and ignored the influence of different distribution in category for clustering results,therefrom,the recognition results were usually suboptimal.The traditional K-means algorithm was improved in the thesis.The improved algorithms with GMM were all applied to voice print recognition.Experimental results expatiates that the improved K-meams algorithm has better recognition performance than that of the traditional one.
Keywords:K-means algorithm  GMM  speaker recognition
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号