首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSO和朴素贝叶斯的软件缺陷预测模型
引用本文:葛贺贺,金聪,叶俊民. 基于PSO和朴素贝叶斯的软件缺陷预测模型[J]. 计算机工程, 2011, 37(12): 36-37. DOI: 10.3969/j.issn.1000-3428.2011.12.012
作者姓名:葛贺贺  金聪  叶俊民
作者单位:华中师范大学计算机科学系,武汉,430079
基金项目:湖北省自然科学基金资助项目
摘    要:
为了设计高效的软件缺陷预测模型,提出一种将粒子群优化算法与朴素贝叶斯(NB)相结合的方法。该方法对历史数据进行离散化后,以NB分类的错误率作为粒子适应值函数,构建软件缺陷预测模型。通过对美国国家航天局软件工程项目的JM1数据进行仿真实验,证明该模型在预测性能方面优于同类方法,预测效果良好。

关 键 词:软件缺陷  预测模型  粒子群优化  朴素贝叶斯  数据离散化
收稿时间:2010-11-18

Software Defect Prediction Model Based on Particle Swarm Optimization and Na(i)ve Bayes
GE He-he,JIN Cong,YE Jun-min. Software Defect Prediction Model Based on Particle Swarm Optimization and Na(i)ve Bayes[J]. Computer Engineering, 2011, 37(12): 36-37. DOI: 10.3969/j.issn.1000-3428.2011.12.012
Authors:GE He-he  JIN Cong  YE Jun-min
Affiliation:(Department of Computer Science,Central China Normal University,Wuhan 430079,China)
Abstract:
In order to design effective software defect prediction model, this paper proposes an approach combining Particle Swarm Optimization(PSO) algorithm and Naive Bayes(NB). After discretizing the original data, the error rate of NB is taken as fitness function of the particle, and a software defect prediction model is constructed. It applies one software project JM1 data of NASA to implement the simulation experiment. The results show that the approach proposed has lower error rate than other methods, and has good performance.
Keywords:software defect  prediction model  Particle Swarm Optimization(PSO)  Naive Bayes(NB)  data discretization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号