首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass
Authors:Marcus Foston  Art J Ragauskas
Affiliation:BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332, USA
Abstract:Dilute acid pretreatment (DAP) is commonly employed prior to enzymatic deconstruction of cellulose to increase overall sugar and subsequent ethanol yields from downstream bioconversion processes. Typically optimization of pretreatment is evaluated by determining hemicellulose removal, subsequent reactivity towards enzymatic deconstruction, and recoverable polysaccharide yields. In this study, the affect of DAP on the supramolecular and ultrastructure of lignocellulosic biomass was evaluated. A series of dilute acidic pretreatments, employing ~0.10–0.20 mol/m3 H2SO4 at ~160–180 °C, for varying residence times were conducted on both Populus and switchgrass samples. The untreated and pretreated biomass samples were characterized by carbohydrate and lignin analysis, gel permeation chromatography (GPC) and 13C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. GPC analysis shows a reduction in the molecular weight of cellulose and change in its polydispersity index (PDI) with increasing residence time, indicating that pretreatment is actually degrading the cellulose chains. 13C CPMAS and non-linear line-fitting of the C4 region in the carbon spectrum of the isolated cellulose not only showed that the crystallinity index increases with residence time, but that the lateral fibril dimension (LFD) and lateral fibril aggregate dimension (LFAD) increase as well.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号