首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental study on flow characteristics of a sleeved jet into a main crossflow
Authors:HL Wu  TK Chen  YS Luo  WQ Gong
Abstract:Experiments were carried out on the hydraulic mechanism of the thermal shock caused by cold jet injection at a T‐junction with thermal sleeve in the reactor cooling system using digital particle imaging velocimetry (DPIV) technique to measure the flow in the main duct and in the annular space of the sleeve tube. The flow and vorticity characteristics were investigated at jet‐to‐crossflow velocity ratios of 0.5 to 4. There was a stream of discharge from the annular space at the rear part of the sleeve near the jet exit, which resulted in decreasing the influence of the jet on the downstream wall. The intensive vorticity in the near wake mainly originated from the shear layer vorticity of the jet and the annular discharge stream. The intensive vorticity soon broke down and dissipated, and further developed into the counterrotating vortex pair in the far wake. The flow in the annulus was closely dependent on R, and thermal protection of the sleeve would become evident at higher R. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(1): 24–31, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10131
Keywords:jet‐to‐crossflow  sleeve tube  digital particle imaging velocimetry  vortex structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号