Solvothermal synthesis of SnNb2O6 nanoplates and enhanced photocatalytic H2 evolution under visible light |
| |
Authors: | Se Won Seo Tae Hoon NohSangbaek Park Chan Woo LeeSang Hyeon Kim Hae Jin KimHun Ki Park Kug Sun Hong |
| |
Affiliation: | Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea |
| |
Abstract: | Well-defined SnNb2O6 nanoplates are synthesized here by a facile template-free solvothermal route in a mixed solvent of water and ethanol without an organic surfactant. The synthesized nanoplates have widths ranging from 200 to 400 nm and thicknesses in a range of 20–30 nm. The nanoplates were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–Vis spectroscopy, Raman spectrometry, and by the Brunauer–Emmett–Teller method. The variation of the lattice parameters and the optical properties of the nanoplates were discussed in detail based on the crystal and electronic structure. The SnNb2O6 nanoplates exhibited greatly enhanced photocatalytic activity in terms of the reduction of water for H2 generation under visible light irradiation as compared to the same compound prepared by a solid–state reaction method. This was mainly attributed to its higher surface area and extremely high two-dimensional anisotropy, which provided a short migration distance along the thickness direction. |
| |
Keywords: | Solvothermal synthesis SnNb2O6 Nanoplates Visible light Photocatalytic H2 evolution |
本文献已被 ScienceDirect 等数据库收录! |