首页 | 本学科首页   官方微博 | 高级检索  
     

在线多示例学习目标跟踪方法研究
作者姓名:戴经成  汪荣贵  游生福  李想
作者单位:合肥工业大学 计算机与信息学院,合肥 230009
摘    要:多示例学习是不同于传统机器学习的一种新的学习模式,近年来被应用于图像检索、文本分类等领域。提出一种基于在线学习的多示例学习算法,将其应用于目标跟踪。该算法通过构造一个在线学习的多示例分类器作为检测器,无需制作大量的样本进行离线的训练,只需在第一帧手动选中目标,便可以自动生成正样本和负样本,并在随后的帧序列中,根据跟踪到的目标自动更新分类器,在跟踪器丢失目标或者目标从场景中消失后,它能够重新检测到目标并更新跟踪器,从而有效地支持了跟踪器跟踪目标。实验证明该方法在背景复杂,光线变化,摄像机抖动等复杂条件下,可以很好地跟踪到目标,且对遮挡具有较好的鲁棒性。

关 键 词:多示例学习  在线学习  目标跟踪  随机森林  
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号