摘 要: | 针对目前交通标志检测算法存在网络复杂度高、计算量大、边缘端部署难度高。提出一种基于YOLOv5的轻量化交通标志目标检测算法。通过增加注意力机制,使用CBAM和CA融合的方式,强化检测模型抗干扰能力;通过FPGM剪枝,对模型进行了压缩,降低计算量、提高推理速度;通过软硬件融合设计,实现YOLOv5s模型与硬件融合,形成一整套完整的移动智能交通标志目标检测系统;结果表明,增加多种注意力机制后,模型精度提高了2.8%。在极限剪枝的情况下,模型仅有0.54 MB。在Jetson Nano(20 W)的环境下,检测速度达21帧/s,满足实时的交通标志检测。
|