首页 | 本学科首页   官方微博 | 高级检索  
     

气液爆轰控制合成多晶纳米二氧化钛
引用本文:罗宁,孙鑫,范学如,梁汉良,陈彦龙,张桂民,董纪伟,翟成.气液爆轰控制合成多晶纳米二氧化钛[J].稀有金属材料与工程,2022,51(1):119-126.
作者姓名:罗宁  孙鑫  范学如  梁汉良  陈彦龙  张桂民  董纪伟  翟成
作者单位:中国矿业大学 力学与土木工程学院,江苏 徐州 221116;中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116;中国矿业大学 爆炸力学与工程爆破研究中心,江苏 徐州 221116,中国矿业大学 力学与土木工程学院,江苏 徐州 221116;中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116;中国矿业大学 爆炸力学与工程爆破研究中心,江苏 徐州 221116,中国矿业大学 力学与土木工程学院,江苏 徐州 221116;中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116,中国矿业大学 力学与土木工程学院,江苏 徐州 221116;中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116;中国矿业大学 爆炸力学与工程爆破研究中心,江苏 徐州 221116,中国矿业大学 力学与土木工程学院,江苏 徐州 221116;中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116,中国矿业大学 力学与土木工程学院,江苏 徐州 221116;中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116,中国矿业大学 力学与土木工程学院,江苏 徐州 221116;中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116,中国矿业大学 安全工程学院,江苏 徐州 221116
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)12072363
摘    要:以氢气、氧气和四氯化钛为混合前驱体,通过气液爆轰法合成了多晶纳米二氧化钛.研究了不同摩尔比例的前驱体和初始反应压力对纳米二氧化钛晶相结构的影响.采用X射线衍射及透射电子显微镜对产物的纳米结构、成分、颗粒大小和形态进行了表征.结果 表明:获得的二氧化钛存在纯净的锐钛矿相、纯净的金红石相和混合相,其中混合相的球形或者类球形...

关 键 词:纳米二氧化钛  气液爆轰  多晶纳米结构  爆轰参数  C-J理论
收稿时间:2020/11/19 0:00:00
修稿时间:2020/12/10 0:00:00

Controllable Synthesis of Polycrystalline Nanostructure TiO2 by Gaseous-Liquid Detonation Method
Luo Ning,Sun Xin,Fan Xueru,Liang Hanliang,Chen Yanlong,Zhang Guimin,Dong Jiwei and Zhai Cheng.Controllable Synthesis of Polycrystalline Nanostructure TiO2 by Gaseous-Liquid Detonation Method[J].Rare Metal Materials and Engineering,2022,51(1):119-126.
Authors:Luo Ning  Sun Xin  Fan Xueru  Liang Hanliang  Chen Yanlong  Zhang Guimin  Dong Jiwei and Zhai Cheng
Affiliation:School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China;Explosive Mechanics and Engineering Blasting Research Center, China University of Mining and Technology, Xuzhou 221116, China,School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China;Explosive Mechanics and Engineering Blasting Research Center, China University of Mining and Technology, Xuzhou 221116, China,School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China,School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China;Explosive Mechanics and Engineering Blasting Research Center, China University of Mining and Technology, Xuzhou 221116, China,School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China,School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China,School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China,School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract:The polycrystalline nano-TiO2 was synthesized by the gaseous-liquid detonation (GLD) method using H2, O2, and TiCl4 as the mixture precursors. The effects of different molar ratios of precursors and initial reaction pressures on the nano-TiO2 crystalline structures were studied. The nanocrystal structures, components, particle size, and morphology were characterized by the X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results demonstrate that the nano-TiO2 consists of pure anatase-TiO2, pure rutile-TiO2, and the mixtures of spherical or quasi-spherical morphologies with particle size of 20~150 nm. Furthermore, the formation mechanism of nano-TiO2 by GLD method was analyzed. The relevant GLD parameters were calculated based on the C-J theory and the related chemical reaction data, which effectively verifies the influence of different molar ratios of precursors and initial pressures on the controllable synthesis of polycrystalline nano-TiO2.
Keywords:nano-TiO2  gaseous-liquid detonation  polycrystalline nanostructure  detonation parameters  C-J theory
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号