摘 要: | 针对目前已有的电力信息物理系统虚假数据注入攻击检测方法由于特征表达能力有限,而导致无法精确获取受攻击位置的问题,提出一种基于反向学习鲸鱼优化多隐层极限学习机的虚假数据注入攻击定位检测方法。所提方法不仅将极限学习机拓展为多隐层神经网络,解决其特征表达能力有限的问题,而且引入鲸鱼优化算法对多隐层极限学习机的各隐层神经元个数进行寻优并采用反向学习策略提高其收敛速度和检测精度,以防止随机确定各隐层神经元个数对检测方法的泛化性能和定位检测结果造成影响。通过在不同场景下对IEEE-14和57节点测试系统进行大量实验,验证了所提方法能够通过历史数据自动识别受攻击的系统状态量所对应的精确位置。与其他多种方法相比,所提方法具有更优的精度、召回率和F1值。
|