首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of impaired metabolic signaling by a truncated human insulin receptor. Decreased activation of protein phosphatase 1 by insulin
Authors:N Begum  JM Olefsky  B Draznin
Affiliation:Department of Medicine, Veterans Affairs Medical Center, Denver, Colorado 80220.
Abstract:Previous studies have shown that a human insulin receptor lacking the COOH-terminal 43-amino acid domain (HIR delta CT) displays a compromised ability to stimulate glucose transport and glycogen synthase, whereas mitogenic signaling and stimulation of the insulin receptor tyrosine kinase activity remain intact (Maegawa, H., McClain, D. A., Freidenberg, G., Olefsky, J. M., Napier, M., Lipari, T., Dull, T. J., Lee, J., and Ullrich, A. (1988) J. Biol. Chem. 263, 8912-8917). In this study, we examined the effect of insulin on protein phosphatase 1 (PP-1) activity and phosphorylation in cells expressing wild-type human insulin receptor (HIRc) and HIR delta CT cells using phosphorylase alpha as substrate in the presence of 3 nM okadaic acid. Basal PP-1 activity was significantly lower in HIR delta CT than in HIRc cells (p < 0.05). Insulin stimulated PP-1 activity in HIRc cells (25-30% increase over basal activity) in a time- and dose-dependent manner. Insulin failed to stimulate PP-1 activity in HIR delta CT cells. Western blotting with the catalytic subunit antibody and the regulatory subunit antibody revealed similar amounts of the 37-kDa band (catalytic subunit) and the 160-kDa band (presumed regulatory subunit) in HIRc and HIR delta CT cells. We conclude that the COOH-terminal domain of the insulin receptor is an important element in mediating the effect of insulin on PP-1 and suggest that activation of PP-1 may be linked to signaling insulin's metabolic actions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号