首页 | 本学科首页   官方微博 | 高级检索  
     


Corrosion behavior of NiCrMo Alloy 625 in high temperature, hydrogenated water
Authors:Stephen E Ziemniak  Michael Hanson
Affiliation:Lockheed Martin Corporation, KAPL, Inc., P.O. Box 1072, Schenectady, NY 12301-1072, USA
Abstract:The corrosion behavior of NiCrMo Alloy 625 (UNS N06625) has been characterized in a 10,000 h test conducted in hydrogenated water at 260 °C. The corrosion kinetics were observed to be parabolic, the parabolic rate constant being determined by chemical descaling to be 0.074 mg dm−2 h−1/2. Characterizations of the corrosion oxide layer via grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy in combination with argon ion milling and target factor analysis, revealed the presence of two spinel oxide phases and significant amounts of recrystallized nickel. Based on the distribution of three oxidized alloying constituents (Ni, Cr, Fe) with respect to depth and oxidation state, it was concluded that: (a) corrosion occurs in a non-selective manner, but significant amounts of nickel(II) ions are released to the water, and (b) the spinel oxides exist as a chromite-rich inner layer (Ni0.7Fe0.3)(Cr0.8Fe0.2)2O4 underneath a coarser, ferrite-rich outer layer (Ni0.9Fe0.1)(Cr0.1Fe0.9)2O4. The trivalent cation distribution in each of these phases appears to represent a solvus in the immiscible NiCr2O4-NiFe2O4 binary.
Keywords:Aqueous corrosion  Hydrothermal reactions  X-ray photoelectron spectroscopy  High temperature water  Auger electron spectroscopy  Corrosion oxide analysis  Spinel oxides  Target factor analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号