摘 要: | 为提高织物疵点检测率,将Gabbor滤波法与等距映射方法进行融合,克服疵点检测过程中存在的问题。首先用由3个尺度和5个方向组成的15个Gabor滤波器簇对织物疵点图像进行滤波,减少疵点图像光照不均和对比度低的影响;然后将滤波图像划分成面积相等且互不重合的邻域,并从邻域中提取高维特征向量。采用等距映射方法对高维特征向量进行降维,剔除高维特征中冗余信息,强化分类器拟合能力;再用低维嵌入模型提取新增样本低维特征向量,用于概率神经网络分类器分类,检测是否存在疵点;最后用2种不同纹理的织物进行检测实验。结果表明,本文方法能有效提高疵点的检测精度。
|