首页 | 本学科首页   官方微博 | 高级检索  
     


Developing Strategies for Agricultural Water Management of Large Irrigation and Drainage Networks with Fuzzy MCDM
Authors:Radmehr  Ahmad  Bozorg-Haddad  Omid  Loáiciga  Hugo A
Affiliation:1.Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, 3158777871, Tehran, Iran
;2.Department of Geography, University of California, Santa Barbara, CA, 93106, USA
;
Abstract:

Sustainable water resources management aims at increasing the efficient use of water and achieving food security. This work proposes a generalized novel spatial fuzzy strategic planning (SFSP) in combination with multi-criteria decision making (MCDM) and a conceptual agricultural water use model for determining sustainable agricultural water management strategies. The proposed framework is applied to an irrigation and drainage network in Iran, which constitutes a large-scale water resource system. A spatial strength, weakness, opportunity, and threat (SWOT) analysis of internal and external factors related to agricultural water management is applied in this work. Possible water management strategies were ranked with the MCDM approach that combines the Analytic Hierarchy Process (AHP) and the Fuzzy technique for order-preference by similarity to ideal solution (TOPSIS). The AHP estimates the criteria weights and the TOPSIS model prioritizes the agricultural water management strategies. The results of SWOT analysis show that the final scores of the internal and external factors are equal to 2.9 and 2.73, respectively. Accordingly, the most attractive strategic type is a SO (aggressive) strategy, and a combination of structural and non-structural strategies (SO, ST, and WO strategies) are the top-ranked ones. Proposed strategies for water supply and demand management are the development and rehabilitation of the physical structure of water resources system of irrigation network, improvement of operation management and maintenance of water resources system, wastewater management, and inter-basin water transfer within the irrigation network. The results indicate that the total annual volume of agricultural water under normal conditions is about 1.8 billion cubic meters, of which about 1707 million cubic meters (95%) issue from surface water sources and 90 million cubic meters (5%) from groundwater sources. The proposed model and the calculated results provide viable and effective solutions for the implementation of sustainable management of water resources and consumption in large-scale water resources systems.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号