首页 | 本学科首页   官方微博 | 高级检索  
     

基于Gentleboost算法的人物检测
作者姓名:程丽芳  赵明昌  张向文
作者单位:桂林电子科技大学 计算机与控制学院,广西 桂林 541004
基金项目:广西青年基金 , 广西科学研究与技术开发计划项目
摘    要:传统的人物检测方法多是对于小样本,并且对于背景复杂的图片检测率很低,但是现实中的场景复杂,而且实时检测系统需要处理大量图片。针对传统检测方法在人体检测中的这些不足,提出了一种基于集成学习的方法——Gentleboost算法的人物检测方法,利用人物的身体碎片以及这些碎片相对于身体中心的相对位置作为特征,用Gentleboost算法训练的分类器来对人体进行分类。为了提高分类器的学习效率,解决复杂场景中人体检测的难题,提出了一种利用线性回归末端作为弱分类器的方法,从正、负两个方面对预测模型进行加权,改变了原来的仅从正预测进行加权的方法。将Gentleboost和基于YCbCr外表滤波加上身体部分特征的人物检测算法(简称为YCbCr算法)进行比较,并且对不同迭代次数的分类性能也进行了比较。实验结果表明,Gentleboost的性能要优于YCbCr算法,而且随着迭代次数的增加,检测精度也随着增加,并且逐渐趋于稳定。该方法执行起来简单,数值上也比较稳定,正确率高,可以处理大量图片,解决了人体检测中的一些关键问题。

关 键 词:人物检测  特征提取  分类器  Gentleboost算法  
收稿时间:2007-10-15
修稿时间:2008-1-7  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号