Co-existing of dressed non-linear gain and electromagnetically induced absorption |
| |
Affiliation: | 1. Institut Charles Gerhardt de Montpellier, UMR 5253, cc1503, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France;2. Institut de Microélectronique, Electromagnétisme et Photonique, Minatec, INPG, 3 parvis Louis Néel, BP 257, 38016 Grenoble Cedex, France;3. Sciences Chimiques de Rennes, Université de Rennes 1, 263, avenue du Général Leclerc, Campus de Beaulieu, Bâtiment 10B, 35042 Rennes Cedex, France;4. Laboratoire de Physique des Lasers, Université PARIS NORD, Institut Galilée, 99, Av. J.B. Clément, 93430 Villetaneuse, France;5. Laboratoire d’Energétique et de Mécanique Théorique et Appliquée, BP 239, 54506 Vandoeuvre Les Nancy Cedex, France;6. Thales Alenia Space, 100 Bd du Midi, BP 99, 06156 Cannes la Bocca Cedex, France;7. European Space Agency, Postbus 299, 2200 AG Noordwijk, The Netherlands;1. School of Materials Science and Engineering, Fujian University of Technology, 3 Xueyuan Road, Fuzhou 350108, PR China;2. Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, 3 Xueyuan Road, Fuzhou 350108, PR China;1. Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic;2. Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, Prague 2 121 16, Czech Republic;3. Nuclear Physics Institute of the Academy of Sciences of the Czech Republic v.v.i., Řež 250 68, Czech Republic;1. Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China;2. National Engineering Research Center for Rare Earth Materials, General Research Institute for Nonferrous Metals, Grirem Advanced Materials Co., Ltd., Beijing 100088, PR China;1. Key Laboratory of Optoelectronic Materials Chemistry and Physics of CAS, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou, Fujian 350002, China;2. University of Chinese Academy of Sciences, Beijing 100039, China |
| |
Abstract: | The dressed parametric four-wave mixing (FWM) process has been investigated in hot atomic rubidium vapor. We use a strong pumping field to generate entangled photon pairs of spontaneous parametric FWM (SP-FWM) which can be enhanced by an external dressing effect. Seeding probe beam into the Stokes or anti-Stokes (SP-FWM) channel will form the parametric amplified FWM (PA-FWM) process, then the non-linear gain and electromagnetically induced absorption (EIA) are observed, caused by the internal dressing effect. However, with scanning of pumping field the absorbing background will vanish, which will result in drastic increase in PA-FWM signal gain. |
| |
Keywords: | Electromagnetically Induced Absorption Four-wave mixing Dressed nonlinear gain (140, 4480) Optical amplifiers (190.4380) Nonlinear optics, four-wave mixing (260.2110) Electromagnetic optics |
本文献已被 ScienceDirect 等数据库收录! |
|