首页 | 本学科首页   官方微博 | 高级检索  
     

基于Curvelet变换和支持向量机的磁瓦表面缺陷识别方法
引用本文:蒋红海,殷国富,刘培勇,尹湘云. 基于Curvelet变换和支持向量机的磁瓦表面缺陷识别方法[J]. 四川大学学报(工程科学版), 2012, 44(3): 147-152
作者姓名:蒋红海  殷国富  刘培勇  尹湘云
作者单位:四川大学制造科学与工程学院,四川成都,610065
基金项目:国家科技支撑计划课题,四川省高新技术产业重大关键技术项目
摘    要:
针对磁瓦表面缺陷对比度低、自动识别困难的问题,作者提出了一种对磁瓦图像应用快速离散Curvelet变换(FDCT)提取特征,并用支持向量机(SVM)分类器进行分类的磁瓦微小缺陷自动识别方法。该方法首先对磁瓦图像做分块处理,并对各分块图像应用FDCT,计算分解系数的l2范数,获得磁瓦不同方向的纹理频域特征;然后以归一化的分解系数l2范数作为支持向量机分类器的特征向量,对图像做出分类。对不同缺陷占比的图像进行实验测试,结果显示,当缺陷部分占分块图像的比例在1/64以上时正确识别率大于83%。

关 键 词:Curvelet变换  表面缺陷  纹理  支持向量机
收稿时间:2011-10-14
修稿时间:2012-03-26

Defect detection on magnetic tile surfaces based on fast discrete curvelet transform and support vector machine
Jiang Honghai,Yin Guofu,Liu Peiyong and Yin Xiangyun. Defect detection on magnetic tile surfaces based on fast discrete curvelet transform and support vector machine[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(3): 147-152
Authors:Jiang Honghai  Yin Guofu  Liu Peiyong  Yin Xiangyun
Affiliation:School of Manufacturing Sci. and Eng., Sichuan Univ.;School of Manufacturing Sci. and Eng., Sichuan Univ.;School of Manufacturing Sci. and Eng., Sichuan Univ.;School of Manufacturing Sci. and Eng., Sichuan Univ.
Abstract:
Difficulties exist in automatically inspecting surface defects because of the low intensity image contrast. To overcome these difficulties, this paper describes a textures analysis method for detecting defects on the magnetic tile surfaces. In this methodology the original image is divided into several equal sized squares, and decomposed based on a fast discrete curvelet transform (FDCT) at different scales and orientations. Then the l2 norms on the curvelet coefficients are calculated as the feature vector for support vector machine (SVM) classifier. The experimental results show that, the defects retrieval accuracy achieved 83% when defects accounted for more than 1/64 of magnetic tile image.
Keywords:Curvelet transform   surface defects   textures   support vector machines
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《四川大学学报(工程科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(工程科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号