首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应动态规划的矿渣微粉生产过程跟踪控制
引用本文:王康, 李晓理, 贾超, 宋桂芝. 基于自适应动态规划的矿渣微粉生产过程跟踪控制. 自动化学报, 2016, 42(10): 1542-1551. doi: 10.16383/j.aas.2016.c150808
作者姓名:王康  李晓理  贾超  宋桂芝
作者单位:1.北京科技大学自动化学院 北京 100083;;2.北京工业大学电子信息与控制工程学院 北京 100124;;3.济南鲁新新型建材股份有限公司 济南 250109
基金项目:国家自然科学基金(61473034,61673053),高等学校博士学科点专项科研基金(20130006110008),北京工业大学内涵发展--引进人才科研启动经费,北京科技新星计划跨学科合作项目资助
摘    要:矿渣微粉是一种新型绿色环保型建材,可以大大提高水泥混凝土的力学性能.本文以矿渣微粉生产过程为研究对象,针对该过程难以通过机理建模进行辨识和控制的特点,利用数据驱动的思想,建立矿渣微粉生产过程的递归神经网络模型.在此基础上,利用自适应动态规划,设计具有控制约束的跟踪控制器,并将其应用到矿渣微粉生产过程中.仿真分析表明,建立的数据驱动模型能够有效地辨识矿渣微粉生产过程,同时,本文提出的控制方法能够实现输入受限的微粉比表面积及磨内压差的最优跟踪控制.

关 键 词:矿渣微粉   数据驱动   自适应动态规划   最优跟踪控制   输入有界
收稿时间:2015-11-30

Optimal Tracking Control for Slag Grinding Process Based on Adaptive Dynamic Programming
WANG Kang, LI Xiao-Li, JIA Chao, SONG Gui-Zhi. Optimal Tracking Control for Slag Grinding Process Based on Adaptive Dynamic Programming. ACTA AUTOMATICA SINICA, 2016, 42(10): 1542-1551. doi: 10.16383/j.aas.2016.c150808
Authors:WANG Kang  LI Xiao-Li  JIA Chao  SONG Gui-Zhi
Affiliation:1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083;;2. College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124;;3. Jinan Luxin Materials Company Limited, Jinan 250109
Abstract:Super fine slag powder is a new kind of green environmental-friendly construction material, which can greatly improve the mechanical properties of cement concrete. However, the slag powder grinding process is hard to identify by a mechanism model. In this paper, a data-driven based recurrent neural network model is constructed utilizing the information measured from slag grinding system. Based on this model, an adaptive dynamic programming algorithm is proposed to realize the optimal tracking control with constrained control input. Further, this algorithm is applied to the slag grinding process. Simulation examples show that the data-based model can effectively identify the grinding process, and the control method can realize the optimal tracking control of specific surface area and mill differential pressure with control constraints.
Keywords:Slag grinding process  data driven  adaptive dynamic programming  optimal tracking control  input constrained
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号