首页 | 本学科首页   官方微博 | 高级检索  
     

基于二叉树型分层BP模型的板形模式识别
引用本文:赵小燕, 张朝晖, 蓝金辉. 基于二叉树型分层BP模型的板形模式识别[J]. 工程科学学报, 2009, 31(2): 261-265,271. DOI: 10.13374/j.issn1001-053x.2009.02.024
作者姓名:赵小燕  张朝晖  蓝金辉
作者单位:北京科技大学信息工程学院,北京,100083;北京科技大学信息工程学院,北京,100083;北京科技大学信息工程学院,北京,100083
摘    要:
针对传统最小二乘多项式板形模式识别方法鲁棒性差、各分项物理意义不明确,以及普通BP(back propagation)识别法精度低等问题,选用勒让德多项式作为板形基本模式,提出一种基于二叉树型分层BP的板形模式识别并行计算模型.该模型通过逐层细化预测范围并选用多个神经网络进行递推.实验结果表明,采用此方法不仅增强了系统的抗干扰能力,而且提高了系统的识别精度.

关 键 词:板形  模式识别  二叉树  分层  模式分解  鲁棒性
收稿时间:2008-03-03

Flatness pattern recognition based on a binary tree hierarchical BP model
ZHAO Xiao-yan, ZHANG Chao-hui, LAN Jin-hui. Flatness pattern recognition based on a binary tree hierarchical BP model[J]. Chinese Journal of Engineering, 2009, 31(2): 261-265,271. DOI: 10.13374/j.issn1001-053x.2009.02.024
Authors:ZHAO Xiao-yan  ZHANG Chao-hui  LAN Jin-hui
Abstract:
Parallel flatness pattern recognition based on a binary tree hierarchical back propagation (BP) model and Legendre orthodoxy polynomial decomposition was presented aiming at the illegibility in physical meaning and poorness in robust stability of traditional flatness defect pattern recognition by the least squares method (LSM) proximity algorithm and the low accuracy of a common BP neuron network. It reduces the prediction range of each network and uses more networks for degree elevation. Experimental results show that the system performances are improved not only in robust ability but also in precision.
Keywords:flatness  pattern recognition  binary tree  hierarchical  pattern decomposition  robust
本文献已被 万方数据 等数据库收录!
点击此处可从《工程科学学报》浏览原始摘要信息
点击此处可从《工程科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号