首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization and distribution of somatostatin SS-1 and SRIF-1 binding sites in rat brain: identity with SSTR-2 receptors
Authors:P Schoeffter  J Pérez  D Langenegger  E Schüpbach  I Bobirnac  H Lübbert  C Bruns  D Hoyer
Affiliation:SANDOZ Pharma Ltd, Basel, Switzerland.
Abstract:
Somatostatin (SRIF) SS-1 binding sites were initially defined in radioligand binding studies performed in rat brain cerebral cortex membranes using [125I]204-090 (a radiolabelled Tyr3 analogue of SMS 201-995, octreotide). SRIF-1 recognition sites were defined in binding studies performed with [125I]MK 678 (seglitide). Both SS-1 and SRIF-1 sites were characterized by their high affinity for SRIF-14, SRIF-28 and for cyclic peptides such as octreotide and seglitide, in marked contrast to SS-2 and SRIF-2 sites which have very low affinity for these synthetic SRIF analogues. In the present study, SS-1 and SRIF-1 radioligand binding studies were performed in rat cortex membranes and compared to results obtained in cloned Chinese hamster ovary cells expressing human SSTR-2 receptors using [125I]204-090 and/or [125I]MK-678. The rank orders of affinity of a variety of SRIF analogues and synthetic peptides for SS-1/SRIF-1 binding sites and recombinant SSTR-2 receptors were very similar and correlated highly significantly (r = 0.94-0.99); by contrast, correlation between SS-1 and SSTR-5 (r = 0.44) or SSTR-3 binding (r = 0.07) was not significant. Autoradiographic studies were performed in rat brain using both radioligands [125I]204-090 and [125I]MK-678 and compared with the distribution of SSTR-2 receptor mRNA determined using in situ hybridization. A clear overlap was observed between the distribution of SSTR-2 mRNA and binding sites labelled with both radioligands. SSTR-2 receptor-mediated inhibition of forskolin-stimulated adenylate cyclase in Chinese hamster ovary cells by a variety of SRIF analogues and short synthetic peptides displayed a rank order of potency highly similar to their rank order of affinity at SS-1/SRIF-1 binding sites. It is concluded that SS-1 and SRIF-1 binding sites respectively labelled with [125I]204-090 and [125I]MK 678, both display the pharmacological profile of SSTR-2 receptors, that the distribution of [125I]204-090 and [125I]MK-678 binding sites in rat brain is superimposable and largely comparable to that of SSTR-2 mRNA expression. It is also shown that neither [125I]204-090 nor [125I]MK-678 label SSTR-3 or SSTR-5 receptors in rat brain. Finally, it is demonstrated that SSTR-2 receptors can very efficiently couple to adenylate cyclase activity in an inhibitory manner.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号