首页 | 本学科首页   官方微博 | 高级检索  
     


Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications
Authors:Tsung-Chieh ChengChin-Hsiang Cheng  Zhu-Zin HuangGuo-Chun Liao
Affiliation:
  • a Department of Mechanical Engineering, National Kaoshiung University of Applied Science, Kaoshiung City, Taiwan, ROC
  • b Department of Aeronautics and Astronautics, National Cheng Kung University, No.1, Ta-Shieh Road, Tainan 70101, Taiwan, ROC
  • Abstract:A solar-driven thermoelectric cooling module with a waste heat regeneration unit designed for green building applications is investigated in this paper. The waste heat regeneration unit consisting of two parallel copper plates and a water channel with staggered fins is installed between the solar cells and the thermoelectric cooler. The useless solar energy from the solar cells and the heat dissipated from the thermoelectric cooler can both be removed by the cooling water such that the performance of the cooling module is elevated. Moreover, it makes engineering sense to take advantage of the hot water produced by the waste heat regeneration unit during the daytime. Experiments are conducted to investigate the cooling efficiency of the module. Results show that the performance of the combined module is increased by increasing the flow rate of the cooling water flowing into the heat regeneration water channel due to the reductions of the solar cell temperature and the hot side temperature of the thermoelectric coolers. The combined module is tested in the applications in a model house. It is found that the present approach is able to produce a 16.2 °C temperature difference between the ambient temperature and the air temperature in the model house.
    Keywords:Solar cell  Thermoelectric cooler  Regeneration water channels  Green building
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号