首页 | 本学科首页   官方微博 | 高级检索  
     

基于VMD的螺栓松动状态识别(英文)
摘    要:针对螺栓出现松动故障信号产生非线性、非平稳的现象,提出一种基于VMD与LSSVM模型相结合的螺栓松动状态识别方法。搭建螺栓松动实验平台采集螺栓松动状态下4种工况的振动信号;利用VMD分解对螺栓松动状态各个工况下的振动信号进行分解,并计算VMD分解后各模态分量的能量熵,最后以各工况下VMD分解的各模态分量能量熵为特征构造特征向量矩阵,通过LSSVM模型进行训练与状态识别。实验结果表明:该方法可以有效的识别出的螺栓松动状态,并通过与EMD-LSSVM模型进行对比,验证了该方法用于螺栓松动状态识别的有效性、可行性与相较其EMD分解方法的优越性。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号