首页 | 本学科首页   官方微博 | 高级检索  
     


Growth condition of iodine-doped n+-CdTe layers in metal-organic vapor phase epitaxy
Authors:K Yasuda  Y Tomita  Y Masuda  T Ishiguro  Y Kawauchi  H Morishita  Y Agata
Affiliation:(1) Department of Electrical and Computer Engineering, Nagoya Institute of Technology, 466-8555 Nagoya, Japan
Abstract:Iodine doping of CdTe layers grown on (100) GaAs by metal-organic vapor phase epitaxy (MOVPE) was studied using diethyltelluride (DETe) and diisopropyltelluride (DiPTe) as tellurium precursors and ethyliodine (EI) as a dopant. Electron densities of doped layers increased gradually with decreasing the growth temperature from 425°C to 325°C. Doped layers grown with DETe had higher electron densities than those grown with DiPTe. When the hot-wall temperature was increased from 200°C to 250°C at the growth temperature of 325°C, doped layers grown with DETe showed an increase of the electron density from 3.7×1016 cm−3 to 2.6×1018 cm−3. On the other hand, such an increase of the electron density was not observed for layers grown with DiPTe. The mechanisms for different doping properties for DETe and DiPTe were studied on the basis of the growth characteristics for these precursors. Higher thermal stability of DETe than that of DiPTe was considered to cause the difference of doping properties. With increasing the hot-wall temperature from 200°C to 250°C, the effective ratio of Cd to Te species on the growth surface became larger for layers grown with DETe than those grown with DiPTe. This was considered to decrease the compensation of doped iodine and to increase the electron density of layers grown with DETe. The effective ratio of Cd to Te species on the growth surface also increased with decreasing growth temperature. This was considered to increase the electron density with decreasing growth temperature.
Keywords:CdTe  metal-organic vapor phase epitaxy (MOVPE)  iodine doping  doping mechanism  n+-CdTe layers
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号