首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM-KNN的半监督托攻击检测方法
引用本文:吕成戍,王维国. 基于SVM-KNN的半监督托攻击检测方法[J]. 计算机工程与应用, 2013, 49(22): 7-10
作者姓名:吕成戍  王维国
作者单位:1.东北财经大学 管理科学与工程学院,辽宁 大连 1160252.东北财经大学 数学与数量经济学院,辽宁 大连 116025
基金项目:辽宁省社会科学规划基金项目(No.L10BJL035);中央高校专项科研基金(No.DUTl0RW302).
摘    要:针对支持向量机方法在标记用户数据不充分的情况下无法有效实现托攻击检测的不足,提出一种基于SVM-KNN的半监督托攻击检测方法。根据少量标记用户数据训练一个初始SVM分类器,利用初始SVM对大量未标记用户数据进行分类,挑选出分类边界附近有可能成为支持向量的样本点,利用KNN分类器优化边界向量的标记质量,再将重新标注过的边界向量融入训练集,迭代训练逐步改善SVM的分类边界,最终获得系统决策函数。实验结果表明在标记用户数据较少的情况下,方法能有效提高托攻击的检测精度和效率,具有较强的推广能力。

关 键 词:攻击检测  半监督学习  支持向量机  K最近邻  

Semi-supervised shilling attacks detection method based on SVM-KNN
LV Chengshu,WANG Weiguo. Semi-supervised shilling attacks detection method based on SVM-KNN[J]. Computer Engineering and Applications, 2013, 49(22): 7-10
Authors:LV Chengshu  WANG Weiguo
Affiliation:1.School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian, Liaoning 116025, China2.School of Mathematics and Quantitative Economics, Dongbei University of Finance and Economics, Dalian, Liaoning 116025, China
Abstract:Traditional support vector machine drops significantly when only a few labeled training samples is available. To ad- dress this problem, a new SVM-KNN classification method based on semi-supervised learning is proposed. In the first stage, use the few labeled training samples to train a weaker SVM classifier. And in the second stage, make use of the boundary vectors to improve the weaker SVM iteratively by introducing KNN. Using KNN classifier doesn't enlarge the number of training exam- ples only, but also improves the quality of the new training samples which are transformed from the boundary vectors. Then the proposed model is used to shilling attacks detection on recommender systems, the experimental results show that the proposed method can improve the classification accuracy, effective and easy to use in the case of fewer labeled training samples.
Keywords:shilling attacks detection  semi-supervised learning  support vector machine  K-nearest neighbor
本文献已被 维普 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号