首页 | 本学科首页   官方微博 | 高级检索  
     


Quasi‐Stable Electroless Ni–P Deposition: A Pivotal Strategy to Create Flexible Li–S Pouch Batteries with Bench Mark Cycle Stability and Specific Capacity
Authors:Jian Gou  Hongzhang Zhang  Xiaofei Yang  Yuqing Chen  Ying Yu  Xianfeng Li  Huamin Zhang
Affiliation:1. Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China;2. Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian, China;3. University of Chinese Academy of Sciences, Beijing, China
Abstract:Development of flexible Li–S batteries brings along the flourishing prospective for energy‐hungry wearable devices. However, it is still seriously restricted due to lack of facile methods to solve its inherent problems and flexible device‐related current collection issues. Herein, quasi‐stable electroless deposition method is firstly proposed to solve these problems by fabricating 3D tunable Ni–P networks in the C/S free‐standing electrode. The ultrathin Ni–P layers which are highly conductive and strongly adhesive with electrode substrates improve the electronic conductivity by two orders of magnitude and rise initial specific capacity from 1200 to 1600 mAh g?1. The harmful shuttle effect of polysulfide is also effectively alleviated due to the chemical adsorption and physical sieving properties of the 3D networks. The flexible pouch Li–S batteries assembled with commercially applicable structure also show high flexibility and as high as 1420 mAh g?1 output capacity at 0.1C in cycling test. This method can definitely be extended to other flexible devices such as Li‐ion batteries, Li–O2 batteries, and supercapacitors.
Keywords:electroless deposition  flexible electrodes  Li–  S batteries  polysulfide shuttles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号