首页 | 本学科首页   官方微博 | 高级检索  
     


Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays
Authors:Lee Hye Jin  Li Yuan  Wark Alastair W  Corn Robert M
Affiliation:Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA.
Abstract:This paper describes a novel approach utilizing the enzyme exonuclease III in conjunction with 3'-terminated DNA microarrays for the amplified detection of single-stranded DNA (ssDNA) with surface plasmon resonance (SPR) imaging. When ExoIII and target DNA are simultaneously introduced to a 3'-terminated ssDNA microarray, hybridization adsorption of the target ssDNA leads to the direction-dependent ExoIII hydrolysis of probe ssDNA strands and the release of the intact target ssDNA back into the solution. Readsorption of the target ssDNA to another probe creates a repeated hydrolysis process that results over time in a significant negative change in SPR imaging signal. Experiments are presented that demonstrate the direction-dependent surface enzyme reaction of ExoIII with double-stranded DNA as well as this new enzymatically amplified SPR imaging process with a 16-mer target ssDNA detection limit of 10-100 pM. This is a 10(2)-10(3) improvement on previously reported measurements of SPR imaging detection of ssDNA based solely on hybridization adsorption without enzymatic amplification.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号