首页 | 本学科首页   官方微博 | 高级检索  
     


Extracellular Matrix Remodeling by Fibroblast-MMP14 Regulates Melanoma Growth
Authors:Elke Pach  Maike Kümper  Julia E Fromme  Jan Zamek  Fabian Metzen  Manuel Koch  Cornelia Mauch  Paola Zigrino
Affiliation:1.Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.);2.Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), 50937 Cologne, Germany;3.Faculty of Medicine and University Hospital, Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50937 Cologne, Germany; (F.M.); (M.K.)
Abstract:Maintaining a balanced state in remodeling the extracellular matrix is crucial for tissue homeostasis, and this process is altered during skin cancer progression. In melanoma, several proteolytic enzymes are expressed in a time and compartmentalized manner to support tumor progression by generating a permissive environment. One of these proteases is the matrix metalloproteinase 14 (MMP14). We could previously show that deletion of MMP14 in dermal fibroblasts results in the generation of a fibrotic-like skin in which melanoma growth is impaired. That was primarily due to collagen I accumulation due to lack of the collagenolytic activity of MMP14. However, as well as collagen I processing, MMP14 can also process several extracellular matrices. We investigated extracellular matrix alterations occurring in the MMP14-deleted fibroblasts that can contribute to the modulation of melanoma growth. The matrix deposited by cultured MMP14-deleted fibroblast displayed an antiproliferative and anti-migratory effect on melanoma cells in vitro. Analysis of the secreted and deposited-decellularized fibroblast’s matrix identified a few altered proteins, among which the most significantly changed was collagen XIV. This collagen was increased because of post-translational events, while de novo synthesis was unchanged. Collagen XIV as a substrate was not pro-proliferative, pro-migratory, or adhesive, suggesting a negative regulatory role on melanoma cells. Consistent with that, increasing collagen XIV concentration in wild-type fibroblast-matrix led to reduced melanoma proliferation, migration, and adhesion. In support of its anti-tumor activity, enhanced accumulation of collagen XIV was detected in peritumoral areas of melanoma grown in mice with the fibroblast’s deletion of MMP14. In advanced human melanoma samples, we detected reduced expression of collagen XIV compared to benign nevi, which showed a robust expression of this molecule around melanocytic nests. This study shows that loss of fibroblast-MMP14 affects melanoma growth through altering the peritumoral extracellular matrix (ECM) composition, with collagen XIV being a modulator of melanoma progression and a new proteolytic substrate to MMP14.
Keywords:MMP14  proteases  melanoma  collagen  extracellular matrix
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号