首页 | 本学科首页   官方微博 | 高级检索  
     

iOS平台下人脸识别系统设计与实现
引用本文:徐国青,朱兆旻,卢春红,顾晓峰,胡峥. iOS平台下人脸识别系统设计与实现[J]. 计算机工程与应用, 2015, 51(10): 182-185
作者姓名:徐国青  朱兆旻  卢春红  顾晓峰  胡峥
作者单位:1.江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 2141222.无锡市航道管理处,江苏 无锡 214031
基金项目:江苏省交通科学研究计划项目(No.2012X08-2);江苏高校优势学科建设工程及中央高校基本科研业务费专项资金(No.JUSRP211A37,No.JUSRP1026,No.JUDCF12027);江苏省普通高校研究生创新计划(No.CXLX12_0734)。
摘    要:
在iOS平台上开发了一款人脸识别系统,借助OpenCV函数库实现了基于Haar-like特征和AdaBoost算法的人脸检测。提出了主成分分析和线性判别分析相结合的人脸识别算法,既避免了主成分分析方法对图像信息不分主次、忽视类别信息的缺陷,又降低了线性判别分析算法高运算量导致的大误差、小样本的局限性。实验结果表明该系统的识别效果良好。

关 键 词:iOS平台  人脸识别  OpenCV  主成分分析  线性判别分析  

Design and implementation of face recognition system based on iOS platform
XU Guoqing,ZHU Zhaomin,LU Chunhong,GU Xiaofeng,HU Zheng. Design and implementation of face recognition system based on iOS platform[J]. Computer Engineering and Applications, 2015, 51(10): 182-185
Authors:XU Guoqing  ZHU Zhaomin  LU Chunhong  GU Xiaofeng  HU Zheng
Affiliation:1.Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education), Jiangnan University, Wuxi, Jiangsu 214122, China2.Wuxi Waterway Management Division, Wuxi, Jiangsu 214031, China
Abstract:
A face recognition system based on the iOS platform is developed. The face detection is realized based on Haar-like features and AdaBoost algorithm by using OpenCV Library. The face detection algorithm combining the Principal Component Analysis(PCA) and Linear Discriminate Analysis(LDA) methods is proposed. The proposed algorithm can not only overcome drawbacks of the conventional PCA, which deals with the image regardless of primary or secondary information and without making use of the class information, but also decrease the limitation of large errors and small samples due to the large amount of computations in the LDA. Experiment results show that the designed system has good face recognition efficiency.
Keywords:iOS platform  face recognition  OpenCV  Principal Component Analysis  Linear Discriminate Analysis
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号