首页 | 本学科首页   官方微博 | 高级检索  
     


An isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes
Authors:T Sousa  M Mamlouk  K Scott
Affiliation:School of Chemical Engineering and Advanced Materials, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, UK
Abstract:A two-dimensional isothermal model is described for an intermediate temperature fuel cell using a phosphoric acid doped polybenzimidazole (PBI) membrane. The model considered the membrane-electrode-assembly and gas flow channels. All the major transport phenomena were taken into account except the cross-over of species through the membrane. The catalyst layers were treated as spherical catalyst agglomerates with porous inter-agglomerate spaces. The inter-agglomerate spaces are filled with a mixture of electrolyte (hot phosphoric acid) and polytetrafluoroethylene (PTFE). The model was validated against experimental data and used to study the influence of the catalyst layer properties on performance. Through the analyses of the effectiveness factor the model showed that utilisation of catalyst particles was very low at high current densities. At these conditions, the reaction occurs mainly on the surface of the agglomerate. An optimum phosphoric acid loading was found from the model simulations. The model was also used to demonstrate the resistance of the intermediate temperature fuel cell to anode poisoning by CO.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号