基于局部姿态先验的深度图像3D人体运动捕获方法 |
| |
作者姓名: | 苏乐 柴金祥 夏时洪 |
| |
作者单位: | 移动计算与新型终端北京市重点实验室(中国科学院 计算技术研究所 前瞻研究实验室), 北京 100190;中国科学院大学, 北京 100049,Texas A&M University, Computer Science and Engineering, Texas 77843-3112, USA,移动计算与新型终端北京市重点实验室(中国科学院 计算技术研究所 前瞻研究实验室), 北京 100190 |
| |
基金项目: | 中国科学院计算技术研究所创新课题(20166040) |
| |
摘 要: | 提出一种基于局部姿态先验的从深度图像中实时在线捕获3D人体运动的方法.关键思路是根据从捕获的深度图像中自动提取具有语义信息的虚拟稀疏3D标记点,从事先建立的异构3D人体姿态数据库中快速检索K个姿态近邻并构建局部姿态先验模型,通过迭代优化求解最大后验概率,实时地在线重建3D人体姿态序列.实验结果表明,该方法能够实时跟踪重建出稳定、准确的3D人体运动姿态序列,并且只需经过个体化人体参数自动标定过程,可跟踪身材尺寸差异较大的不同表演者;帧率约25fps.因此,所提方法可应用于3D游戏/电影制作、人机交互控制等领域.
|
关 键 词: | 运动捕获 数据驱动 深度图像 K近邻搜索 最大后验概率 |
收稿时间: | 2016-05-10 |
修稿时间: | 2016-09-07 |
|
| 点击此处可从《软件学报》浏览原始摘要信息 |
|
点击此处可从《软件学报》下载免费的PDF全文 |
|