首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络模型的时间序列预测算法及其应用
引用本文:王玉涛,夏靖波,周建常,王师. 基于神经网络模型的时间序列预测算法及其应用[J]. 信息与控制, 1998, 27(6): 413-417
作者姓名:王玉涛  夏靖波  周建常  王师
作者单位:东北大学信息科学与工程学院,沈阳,110006
基金项目:国家计委“九五”重点科技攻关项目
摘    要:
提出了一种神经网络模型的时间序列直接多步预测算法。网络的学习采用具有遗忘因子的BP算法与时差方法相结合的混合算法,解决了经典BP算法在直接多步预测中不能渐进计算的问题,同时网络具备一定的结构学习能力。采用该算法对现场采集的高炉铁水含硅量时间序列数据进行预报实验,表明本文提出的直接多步预测方法是可行的。

关 键 词:神经网络 时间序列 预测 BP算法

A PREDICTIVE ALGORITHM BASED ON NEURAL NETWORK MODEL FOR TIMES SERIES AND ITS APPLICATION
Wang Yutao,Xia Jingbo,ZHOU Jianchang,WANG Shi. A PREDICTIVE ALGORITHM BASED ON NEURAL NETWORK MODEL FOR TIMES SERIES AND ITS APPLICATION[J]. Information and Control, 1998, 27(6): 413-417
Authors:Wang Yutao  Xia Jingbo  ZHOU Jianchang  WANG Shi
Abstract:
This paper applies a hybrid learning algorithm based on neural network model to predict time series with several steps in advance. The proposed algorithm combines time difference method with BP algorithm with forgetting. It helps to solve the computing problem incrementally in traditional BP algorithm on multi-step predicting and has the ability of structural learning. The predictions of the silicon content time series dota of the hot metal in blast furnace show that the method proposed here is feasible.
Keywords:neural network   time series   predict   TD method   BP algorithm  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号