首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于粒子滤波的联合跟踪与分类算法
引用本文:申屠晗,郭云飞,薛安克. 一种基于粒子滤波的联合跟踪与分类算法[J]. 机电工程, 2010, 27(3): 41-44
作者姓名:申屠晗  郭云飞  薛安克
作者单位:杭州电子科技大学,信息与控制研究所,浙江,杭州,310018
基金项目:国家自然科学基金资助项目(60805013)
摘    要:针对纯运动学信息联合跟踪与分类问题,提出了一种基于混合无味粒子滤波的联合跟踪与分类算法。在传统粒子滤波联合跟踪与分类算法的基础上,通过采用无味变换,利用多个无味卡尔曼滤波器给出更高质量的粒子建议分布,提高整个算法的性能。理论分析和仿真结果都表明,与传统粒子滤波联合跟踪与分类算法相比,该算法无论在跟踪精度还是在分类正确率上都有明显的提高。

关 键 词:联合跟踪与分类  贝叶斯估计  混合无味粒子滤波  无味变换

A joint tracking and classification algorithm based on particle filtering
SHEN Tu-han,GUO Yun-fei,XUE An-ke. A joint tracking and classification algorithm based on particle filtering[J]. Mechanical & Electrical Engineering Magazine, 2010, 27(3): 41-44
Authors:SHEN Tu-han  GUO Yun-fei  XUE An-ke
Affiliation:Institute of Information and Control;Hangzhou Dianzi University;Hangzhou 310018;China
Abstract:In order to cope with the joint tracking and classification(JTC) problem,a new mixture unscented particle joint tracking and classification algorithm(MUPF-JTC) was proposed.Based on traditional mixture unscented particle joint tracking and classification algorithm(MPF-JTC),by adopting the methods of unscented transform(UT),several unscented Kalman filters(UKF) were designed in order to get higher quality particle distributions.Mathematical analysis and simulation results confirm that the MUPF-JTC algorithm ...
Keywords:joint tracking and classification(JTC )  Bayesian estimation  mixture unscented particle joint tracking and classification algorithm(MUPF-JTC)  unscented transform(UT)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号