首页 | 本学科首页   官方微博 | 高级检索  
     


Curvature and entropy based wall boundary condition for the high order spectral volume Euler solver
Authors:R Kannan  ZJ Wang
Affiliation:a CFD Research Corporation, 215 Wynn Drive, Huntsville, AL 35805, United States;b Iowa State University, Howe Hall, Ames, IA 50011, United States
Abstract:A curvature and entropy based wall boundary condition is implemented in the high order spectral volume (SV) context. This method borrows ideas from the “curvature-corrected symmetry technique” developed by (Dadone A, Grossman B. Surface Boundary Conditions for Compressible Flows. AIAA J 1994; 32(2): 285–93), for a low order structured grid Euler solver. After numerically obtaining the curvature, the right state (by convention, the left state is inside the computational domain and the right state lies outside of the computational domain) face pressure values are obtained by solving a linearised system of equations. This is unlike that of the lower order finite volume and difference simulations, wherein the right state face values are trivial to obtain. The right state face density values are then obtained by enforcing entropy conservation. Accuracy studies show that simulations performed by employing the new boundary conditions deliver much more accurate results than the ones which employ traditional boundary conditions, while at the same time asymptotically reaching the desired order of accuracy. Numerical results for two-dimensional inviscid flows around the NACA0012 airfoil and over a bump with the new boundary condition showed dramatic improvements over those with the conventional approach. In all cases and orders, spurious entropy productions with the new boundary treatment are significantly reduced. In general, the numerical results are very promising and indicate that the approach has a great potential for 3D high order simulations.
Keywords:Spectral volume  High order  Curvature  Entropy  Boundary condition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号