首页 | 本学科首页   官方微博 | 高级检索  
     

基于扰动因子的准则函数下的聚类算法
引用本文:王晓东,满扬,李海洋. 基于扰动因子的准则函数下的聚类算法[J]. 纺织高校基础科学学报, 2017, 30(1). DOI: 10.13338/j.issn.1006-8341.2017.01.014
作者姓名:王晓东  满扬  李海洋
作者单位:西安工程大学理学院,陕西西安,710048
基金项目:陕西省自然科学基金资助项目
摘    要:针对初始聚类中心的选择对于K-均值算法的聚类结果非常敏感,且容易陷入局部极值的缺点,提出利用蚁群聚类算法来搜寻K-均值的初始聚类中心,同时通过在搜索空间增加一组逐渐递减的服从均匀分布的扰动因子,建立基于扰动因子的准则函数下的聚类算法.最后对蚁群聚类算法、K-均值聚类算法以及改进后的算法做了对比实验.实验结果表明,改进后算法的聚类能力更强.

关 键 词:K-均值聚类算法  聚类中心  扰动因子  蚁群聚类算法

Clustering algorithm under the criterion function based on the disturbance factors
WANG Xiaodong,MAN Yang,LI Haiyang. Clustering algorithm under the criterion function based on the disturbance factors[J]. Basic Sciences Journal of Textile Universities, 2017, 30(1). DOI: 10.13338/j.issn.1006-8341.2017.01.014
Authors:WANG Xiaodong  MAN Yang  LI Haiyang
Abstract:As to the clustering results of K-Means algorithm is very sensitive to selecting an initial cluster centers,and easy to fall into local extreme,it is put forward that K-means' initial clustering center is searched by ant colony clustering algorithm which has a strong ability to deal with local extremum.At the same time,clustering algorithm under the criterion function based on the disturbance factors is established by adding a set of gradually decreasing uniform distribution factors in search space.Finally,the contrast tests are made among the ant colony algorithm,the K-mean algorithm and the improved algorithm.The results show that the improved algorithm's clustering ability is stronger than the other two.
Keywords:K-means algorithm  clustering center  disturbance factor  ant colony clustering al-gorithm
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号