摘 要: | 针对单回声状态网络难以充分描述数据信息的问题,提出多稀疏回声状态网络预测模型.通过对相关回声状态网络的组合权值及由相关样本得到的基函数的权值同时进行学习,获得优化的多个稀疏回声状态网络组合模型.所提模型不同于双稀疏相关向量机等多核学习模型,它不需要选择特定的核函数及相应的核参数.因此,该模型不但能更好的描述数据信息,避免了双稀疏相关向量机及其他多核学习中核函数及其参数不易选择的问题.同时,所提模型不需要采用交叉验证的方式确定回声状态网络的谱半径和稀疏度,只需确定相应的区间.本文通过两组标杆数据和一组实际数据仿真实验,与传统回声状态网络方法相比,验证了所提模型具有更好的预测性能.
|