首页 | 本学科首页   官方微博 | 高级检索  
     

基于无迹卡尔曼滤波的iBeacon/INS数据融合定位算法
引用本文:王守华, 陆明炽, 孙希延, 纪元法, 胡丁梅. 基于无迹卡尔曼滤波的iBeacon/INS数据融合定位算法[J]. 电子与信息学报, 2019, 41(9): 2209-2216. doi: 10.11999/JEIT180748
作者姓名:王守华  陆明炽  孙希延  纪元法  胡丁梅
作者单位:1.桂林电子科技大学广西精密导航技术与应用重点实验室 桂林 541004;;2.卫星导航定位与位置服务国家地方联合工程研究中心 桂林 541004;;3.桂林电子科技大学广西信息科学实验中心 桂林 541004
基金项目:国家重点研发计划;广西自然科学基金;主任基金;广西壮族自治区科技项目;桂林电子科技大学研究生教育创新项目
摘    要:针对微机电惯性导航系统(MEMS-INS)定位解算存在积累误差及低功耗蓝牙技术iBeacon指纹定位存在跳变误差等问题,该文提出一种基于无迹卡尔曼滤波器(UKF)的iBeacon/MEMS-INS数据融合定位算法。该算法对iBeacon锚点与定位目标的距离进行解算,利用加速度计和陀螺仪的数据实现姿态阵和位置解算。将蓝牙锚点位置向量、载体速度误差信息等组成状态量,将惯性导航定位信息和蓝牙定位距离信息等组成观测量,设计无迹卡尔曼滤波器,实现iBeacon/MEMS-INS数据融合定位。实验测试结果表明,该算法有效解决MEMS-INS存在较大积累误差及iBeacon指纹定位存在跳变误差的问题,可以实现1.5 m内的定位精度。

关 键 词:惯性传感器   蓝牙信标   无迹卡尔曼滤波器   信息融合   行人定位
收稿时间:2018-07-23
修稿时间:2019-02-25

IBeacon/INS Data Fusion Location Algorithm Based on Unscented Kalman Filter
Shouhua WANG, Mingchi LU, Xiyan SUN, Yuanfa JI, Dingmei HU. IBeacon/INS Data Fusion Location Algorithm Based on Unscented Kalman Filter[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2209-2216. doi: 10.11999/JEIT180748
Authors:Shouhua WANG  Mingchi LU  Xiyan SUN  Yuanfa JI  Dingmei HU
Affiliation:1. Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China;;2. Satellite Navigation and Location Service National & Local Joint Engineering Research Center, Guilin 541004, China;;3. Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology, Guilin 541004, China
Abstract:In order to overcome the accumulation error in Micro-Electro-Mechanical System-Inertial Navigation System (MEMS-INS) and the jump error in iBeacon fingerprint positioning, an iBencon/MEMS-INS data fusion location algorithm based on Unscented Kalman Filter (UKF) is proposed. The new algorithm solves the distance between the iBeacon anchor and the locating target. The solution of attitude matrix and position are obtained respectively by using accelerometer and gyroscope data. Bluetooth anchor position vector, the carrier speed error and other information constitute state variables. Inertial navigation location and bluetooth system distance information constitute measure variables. Based on state variables and measure variables, the UKF is designed to realize iBencon/MEMS-INS data fusion indoor positioning. The experimental results show that the proposed algorithm can effectively solve the problem of the large accumulation error of INS and the jump error of iBeacon fingerprint positioning, and this algorithm can realize 1.5 m positioning accuracy.
Keywords:Inertial sensor  Bluetooth beacon  Unscented Kalman Filter (UKF)  Information fusion  Pedestrian positioning
本文献已被 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号