首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating epidemic coupling between populations from the time to invasion
Authors:Karsten Hempel  David J D Earn
Affiliation:Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1
Abstract:Identifying the mechanisms by which diseases spread among populations is important for understanding and forecasting patterns of epidemics and pandemics. Estimating transmission coupling among populations is challenging because transmission events are difficult to observe in practice, and connectivity among populations is often obscured by local disease dynamics. We consider the common situation in which an epidemic is seeded in one population and later spreads to a second population. We present a method for estimating transmission coupling between the two populations, assuming they can be modelled as susceptible–infected–removed (SIR) systems. We show that the strength of coupling between the two populations can be estimated from the time taken for the disease to invade the second population. Confidence in the estimate is low if only a single invasion event has been observed, but is substantially improved if numerous independent invasion events are observed. Our analysis of this simplest, idealized scenario represents a first step toward developing and verifying methods for estimating epidemic coupling among populations in an ever-more-connected global human population.
Keywords:epidemiological model  contact matrix  spatial mixing  time to invasion  parameter estimation  infectious disease
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号