首页 | 本学科首页   官方微博 | 高级检索  
     


Pool boiling of R-123/oil mixtures on enhanced tubes having different pore sizes
Authors:Nae-Hyun Kim  Do-Young Kim
Affiliation:1. Icetro Inc., Incheon, Republic of Korea;2. Department of Mechanical Engineering, Incheon National University, 12-1, Songdo-Dong, Yeonsu-Gu, Incheon 406-772, Republic of Korea
Abstract:The effect of enhanced geometry (pore diameter, gap width) is investigated on the pool boiling of R-123/oil mixture for the enhanced tubes having pores with connecting gaps. Tubes having different pore diameters (and corresponding gap widths) are specially made. Significant heat transfer degradation by oil is observed for the present enhanced tubes. At 5% oil concentration, the degradation is 26–49% for Tsat = 4.4 °C. The degradation increases 50–67% for Tsat = 26.7 °C. The heat transfer degradation is significant even with small amount of oil (20–38% degradation at 1% oil concentration for Tsat = 4.4 °C), probably due to the accumulation of oil in sub-tunnels. The pore size (or gap width) has a significant effect on the heat transfer degradation. The maximum degradation is observed for dp = 0.20 mm tube at Tsat = 4.4 °C, and dp = 0.23 mm tube at Tsat = 26.7 °C. The minimum degradation is observed for dp = 0.27 mm tube for both saturation temperatures. It appears that the oil removal is facilitated for the larger pore diameter (along with larger gap) tube. The highest heat transfer coefficient with oil is obtained for dp = 0.23 mm tube, which yielded the highest heat transfer coefficient for pure R-123. The optimum tube significantly (more than 3 times) outperforms the smooth tube even with oil. The heat transfer degradation increases as the heat flux decreases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号