首页 | 本学科首页   官方微博 | 高级检索  
     


Removal of PM2.5 entering through the ventilation duct in an automobile using a carbon fiber ionizer-assisted cabin air filter
Authors:Jae Hong Park  Ki Young Yoon  Kwang Chul Noh  Jeong Hoon Byeon  Jungho Hwang
Affiliation:1. School of Mechanical Engineering, Yonsei University, Seoul 120-749, Republic of Korea;2. Exhaust Emission Engineering Team, Hyundai Motor Company, Hwaseong 445-706, Republic of Korea;3. LCD Division, Samsung Electronics Co., Ltd., Yongin 446-711, Republic of Korea
Abstract:This study evaluated the charging characteristics of a carbon fiber ionizer for PM2.5 and carried out particle capture laboratory tests after an ionizer was installed upstream of the media of an electret cabin air filter. When the ion concentration per particle (Ni) of the carbon fiber charger was 106 ions/cm3, the average charge numbers for each particle were 1.54, 0.88, and 0.49 at 0.6, 1.2, and 1.8 m/s of face velocity, respectively (the particle charging times, τ, were 167, 83, and 56 ms, respectively). For these face velocities, the PM2.5 removal efficiencies of the filter media were 69.3%, 65.2% and 62.2%, respectively, but increased to 80.4%, 71.2% and 65.5%, respectively, when the ionizer was turned on. The carbon fiber ionizer was then installed in front of an electret cabin filter in the air conditioning system of an automobile, after which field tests were performed at a roadside area. For the same Niτ used in the lab-scale tests, the effects of the carbon fiber ionizer on increasing PM2.5 %Reduction were mild as 9.4%, 4.0%, and 2.8% when the flow rates were at the second, fourth, and sixth levels, respectively (the face velocities were 0.6, 1.2, and 1.8 m/s, respectively). The PM2.5 %Reduction can be substantially increased by 20–21%, for a higher value of Niτ (=1.0×108 ions s/cm3), which is realized by increasing the power consumption of the carbon fiber ionizer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号