首页 | 本学科首页   官方微博 | 高级检索  
     

基于区域特征分析的快速FCM图像分割改进算法
引用本文:徐少平,刘小平,李春泉,胡凌燕,杨晓辉. 基于区域特征分析的快速FCM图像分割改进算法[J]. 模式识别与人工智能, 2012, 25(6): 987-995
作者姓名:徐少平  刘小平  李春泉  胡凌燕  杨晓辉
作者单位:1。南昌大学信息工程学院南昌330031
2。南昌大学机电工程学院南昌330031
3。DepartmentofSystemsandComputerEngineering,CarletonUniversity,Ottawa,ONCanadaK1S5B6
基金项目:国家自然科学基金项目(No.61163023,61175072);江西省自然科学基金项目(No.20114BAB211024);江西省教育厅科技计划项目(No.GJJ12049);江西省教育厅省级教改项目(No.JXJG-12124)资助
摘    要:
提出一种基于图像区域特征估计聚类数的快速FCM图像分割算法。在算法的预测分析阶段, 利用由共生矩阵统计值所构成的特征矢量描述图像中区域特征并结合多个聚类有效性判定函数实现准确的聚类数估计和隶属度矩阵值的初始化。在主聚类阶段,采用Gabor滤波器提取的颜色纹理隐式混合特征进行聚类,不但能获得更加合理的区域分割质量,同时也具有较好的抗噪声能力。实验表明改进算法有效克服基于像素点级特征的FCM图像分割算法在聚类数估计和隶属度矩阵初始化方面的不足,加快FCM主聚类阶段的迭代速度,执行效率更高。

关 键 词:图像分割  FCM算法  区域特征  共生矩阵  颜色纹理隐式特征  
收稿时间:2012-02-29

An Improved Fast FCM Image Segmentation Algorithm Based on Region Feature Analysis
XU Shao-Ping,LIU Xiao-Ping,LI Chun-Quan,HU Ling-Yan,YANG Xiao-Hui. An Improved Fast FCM Image Segmentation Algorithm Based on Region Feature Analysis[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(6): 987-995
Authors:XU Shao-Ping  LIU Xiao-Ping  LI Chun-Quan  HU Ling-Yan  YANG Xiao-Hui
Affiliation:1.School of Information Engineering,Nanchang University,Nanchang 330031
2.School of Mechanical and Electrical Engineering,Nanchang University,Nanchang 330031
3.Department of Systems and Computer Engineering,Carleton University,Ottawa,ON Canada K1S 5B6
Abstract:
A fast image segmentation algorithm based on region feature is proposed to estimate centroid number. In the preprocessing analysis stage, the feature vector based on the cooccurrence matrix statistics is used to describe the regional characteristics of sub-image, and the proposed algorithm combines with cluster validity function to estimate accurate centroid number and initialization of membership matrix. In the main clustering stage, the implicit feature of color and texture extracted by Gabor filter is used to accomplish clustering, which not only produces a more reasonable quality of region segmentation, but also has fine noise immunity. The experimental results show that the proposed algorithm effectively overcomes the deficiencies of pixel-level estimations, greatly accelerates the iterative speed of the FCM main clustering stage and achieves higher efficiency in the implementation.
Keywords:Image Segmentation  Fuzzy C-means Algorithm  Region Feature  Cooccurrence Matrix  Implicit Feature of Color and Texture  
本文献已被 CNKI 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号