首页 | 本学科首页   官方微博 | 高级检索  
     


Genetic algorithm model for shear capacity of RC beams reinforced with externally bonded FRP
Authors:Moncef Nehdi  Hasan Nikopour
Affiliation:(1) Department of Civil and Environmental Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
Abstract:A variety of on-site construction applications using FRP materials have been realized worldwide. However, this technology is currently at a stage where its future widespread implementation and competitiveness will depend on the development of reliable design guidelines based on sound engineering principles. This paper presents simple, yet improved, equations to calculate the shear capacity of FRP bonded-reinforced concrete beams based on the genetic algorithms (GAs) approach applied to 212 experimental data points available in the open literature. The performance of the proposed equations was compared to that of commonly used shear design methods, namely the ACI 440, Eurocode (EC2), the Matthys Model, Colotti model and the ISIS Canada guidelines. Results demonstrate that the proposed equations better agree with the available experimental data than the existing models investigated. Moreover, a sensitivity analysis was carried out to investigate the effect of the shear span-to-depth ratio on the shear capacity contributed by concrete, the ultimate effective strain in FRP sheets, and the ultimate effective stress in transverse rebars. Results indicate that the shear span-to-depth ratio has a significant effect on the shear behaviour of FRP bonded-reinforced concrete beams.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号