首页 | 本学科首页   官方微博 | 高级检索  
     


A GEOSTATISTICAL MODEL FOR LINEAR PREDICTION ANALYSIS OF SPEECH
Authors:TUAN D. PHAM  MICHAEL WAGNER
Affiliation:

a Faculty of Information Sciences and Engineering, University of Canberra ACT 2601 Australia

Abstract:This paper presents a geostatistical model as a new approach to the linear prediction analysis of speech. The autocorrelation method of autoregressive modeling, which is widely applied in the linear predictive coding of speech, is used as a benchmark for comparison with the present algorithm. Before discussing the proposed model, we will briefly describe the concepts of linear prediction analysis of speech and how this is solved by the well-known method of autocorrelation. Following is the introduction of geostatistics including the ideas of regionalized variables, semi-variograms and kriging equations. We then propose a geostatistical model to the linear prediction modeling of speech signals. Examples on speech data are given to illustrate the effectiveness of the present algorithm in comparison with the autocorrelation method. Advantages offered by the proposed geostatistical algorithm over the autocorrelation method in the linear prediction analysis of speech are summarized as follows: (1) it is more effective due to the optimization of the kriging equations taking into account the biased condition; (2) it is more flexible by allowing different biased values for the fitting of the signal spectrum, and therefore may provide a means for adaptive LPC; (3) it can give a good estimate of the number of poles used in the LPC by means of the theoretical semi-variogram.
Keywords:Speech analysis   Correlation methods   Mathematical models   Speech coding   Algorithms   Optimization   Linear prediction analysis   Geostatistical models   Kriging equations   Linear prediction coding (LPC)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号