首页 | 本学科首页   官方微博 | 高级检索  
     


High performance electrocatalysts supported on graphene based hybrids for polymer electrolyte membrane fuel cells
Authors:Begüm Yarar Kaplan  Navid Haghmoradi  Emre Biçer  César Merino  Selmiye Alkan Gürsel
Affiliation:1. Sabanci University Nanotechnology Research & Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey;2. Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey;3. Grupo Antolin Ingeniería, Burgos, E09007, Spain
Abstract:In this study, new electrocatalysts for PEM fuel cells, based on Pt nanoparticles supported on hybrid carbon support networks comprising reduced graphene oxide (rGO) and carbon black (CB) at varying ratios, were designed and prepared by means of a rapid and efficient microwave-assisted synthesis method. Resultant catalysts were characterized ex-situ for their structure, morphology, electrocatalytic activity. In addition, membrane-electrode assemblies (MEAs) fabricated using resultant electrocatalysts and evaluated in-situ for their fuel cell performance and impedance characteristics. TEM studies showed that Pt nanoparticles were homogeneously decorated on rGO and rGO-CB hybrids while they had bigger size and partially agglomerated distribution on CB. The electrocatalyst, supported on GO-CB hybrid containing 75% GO (HE75), possessed very encouraging results in terms of Pt particle size and dispersion, catalytic activity towards HOR and ORR, and fuel cell performance. The maximum power density of 1090 mW cm?2 was achieved with MEA (Pt loading of 0.4 mg cm?2) based on electrocatalyst, HE75. Therefore, the resultant hybrid demonstrated higher Pt utilization with enhanced FC performance output. Our results, revealing excellent attributes of hybrid supported electrocatalysts, can be ascribed to the role of CB preventing rGO sheets from restacking, effectively modifying the array of graphene and providing more available active catalyst sites in the electrocatalyst material.
Keywords:Graphene  Hybrid catalyst support  Pt nanoparticle  Electrocatalyst  PEM fuel cell
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号