A support vector machine classifier with automatic confidence and its application to gender classification |
| |
Authors: | Ji ZhengAuthor VitaeBao-Liang LuAuthor Vitae |
| |
Affiliation: | a Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China b MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China |
| |
Abstract: | In this paper, we propose a support vector machine with automatic confidence (SVMAC) for pattern classification. The main contributions of this work to learning machines are twofold. One is that we develop an algorithm for calculating the label confidence value of each training sample. Thus, the label confidence values of all of the training samples can be considered in training support vector machines. The other one is that we propose a method for incorporating the label confidence value of each training sample into learning and derive the corresponding quadratic programming problems. To demonstrate the effectiveness of the proposed SVMACs, a series of experiments are performed on three benchmarking pattern classification problems and a challenging gender classification problem. Experimental results show that the generalization performance of our SVMACs is superior to that of traditional SVMs. |
| |
Keywords: | Label confidence Pattern classification Support vector machine Gender classification |
本文献已被 ScienceDirect 等数据库收录! |
|