首页 | 本学科首页   官方微博 | 高级检索  
     


A compressive sensing and unmixing scheme for hyperspectral data processing
Authors:Li Chengbo  Sun Ting  Kelly Kevin F  Zhang Yin
Affiliation:Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA. Chengbo.Li@rice.edu
Abstract:
Hyperspectral data processing typically demands enormous computational resources in terms of storage, computation, and input/output throughputs, particularly when real-time processing is desired. In this paper, a proof-of-concept study is conducted on compressive sensing (CS) and unmixing for hyperspectral imaging. Specifically, we investigate a low-complexity scheme for hyperspectral data compression and reconstruction. In this scheme, compressed hyperspectral data are acquired directly by a device similar to the single-pixel camera based on the principle of CS. To decode the compressed data, we propose a numerical procedure to compute directly the unmixed abundance fractions of given endmembers, completely bypassing high-complexity tasks involving the hyperspectral data cube itself. The reconstruction model is to minimize the total variation of the abundance fractions subject to a preprocessed fidelity equation with a significantly reduced size and other side constraints. An augmented Lagrangian-type algorithm is developed to solve this model. We conduct extensive numerical experiments to demonstrate the feasibility and efficiency of the proposed approach, using both synthetic data and hardware-measured data. Experimental and computational evidences obtained from this paper indicate that the proposed scheme has a high potential in real-world applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号