首页 | 本学科首页   官方微博 | 高级检索  
     

基于Q学习的生物序列比对方法
引用本文:侯凤成,刘弘. 基于Q学习的生物序列比对方法[J]. 信息技术与信息化, 2007, 22(2): 85-88
作者姓名:侯凤成  刘弘
作者单位:山东师范大学信息科学与工程学院,济南,250014;山东师范大学信息科学与工程学院,济南,250014
摘    要:
将寻求两条生物序列最优比对的过程视为Agent自主学习寻找最优策略的过程。用状态集合表示序列中的碱基和为了获得最佳排列插入序列的空格,为Agent每一次行动打分作为立即收益,合计每一种策略的所有立即收益作为该策略的预期收益,获得最大预期收益的策略就是最优策略,与之对应的Agent遍历的状态集合就是最佳排列。给出了时间复杂度和空间复杂度的公式证明,通过实验证明该方法有效地降低了时间复杂度和空间复杂度(O(kh))。

关 键 词:Q学习  序列比对  Agent

SAQL: A New Approach for Sequence Alignment base on Q-learning
HOU Feng-cheng,LIU Hong. SAQL: A New Approach for Sequence Alignment base on Q-learning[J]. Information Technology & Informatization, 2007, 22(2): 85-88
Authors:HOU Feng-cheng  LIU Hong
Affiliation:HOU Feng-cheng LIU Hong
Abstract:
Look on finding the optimal compare result as the progress of the Agent finding the optimal strategy. The state set is used as the expression of the acids and the gaps inset into the alignment aimed to get the optimal Sequence Alignment. Give a score for every action of the Agent as the immediately profits, count all the immediately profits of every strategy as the expected profits, The optimal strategy is the strategy which has the largest expected profits, and the optimal sequence alignment is the state set of the optimal strategy. Give the formula approval of the time complexity and the space complexity, also prove the time complexity and the space complexity reduce to(O(kn))by experiment.
Keywords:Agent
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号